Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1112, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919390

RESUMO

Most functional eukaryotic mRNAs contain a 5' 7-methylguanosine (m7G) cap. Although capping is essential for many biological processes including mRNA processing, export and translation, the fate of uncapped transcripts has not been studied extensively. Here, we employed fast nuclear depletion of the capping enzymes in Saccharomyces cerevisiae to uncover the turnover of the transcripts that failed to be capped. We show that although the degradation of cap-deficient mRNA is dominant, the levels of hundreds of non-capped mRNAs increase upon depletion of the capping enzymes. Overall, the abundance of non-capped mRNAs is inversely correlated to the expression levels, altogether resembling the effects observed in cells lacking the cytoplasmic 5'-3' exonuclease Xrn1 and indicating differential degradation fates of non-capped mRNAs. The inactivation of the nuclear 5'-3' exonuclease Rat1 does not rescue the non-capped mRNA levels indicating that Rat1 is not involved in their degradation and consequently, the lack of the capping does not affect the distribution of RNA Polymerase II on the chromatin. Our data indicate that the cap presence is essential to initiate the Xrn1-dependent degradation of mRNAs underpinning the role of 5' cap in the Xrn1-dependent buffering of the cellular mRNA levels.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleases/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Hum Mol Genet ; 32(4): 608-620, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36084040

RESUMO

Mutations and aberrant gene expression during cellular differentiation lead to neurodevelopmental disorders, such as Prader-Willi syndrome (PWS), which results from the deletion of an imprinted locus on paternally inherited chromosome 15. We analyzed chromatin-associated RNA in human induced pluripotent cells (iPSCs) upon depletion of hybrid small nucleolar long non-coding RNAs (sno-lncRNAs) and 5' snoRNA capped and polyadenylated long non-coding RNAs (SPA-lncRNAs) transcribed from the locus deleted in PWS. We found that rapid ablation of these lncRNAs affects transcription of specific gene classes. Downregulated genes contribute to neurodevelopment and neuronal maintenance, while upregulated genes are predominantly involved in the negative regulation of cellular metabolism and apoptotic processes. Our data reveal the importance of SPA-lncRNAs and sno-lncRNAs in controlling gene expression in iPSCs and provide a platform for synthetic experimental approaches in PWS studies. We conclude that ncRNAs transcribed from the PWS locus are critical regulators of a transcriptional signature, which is important for neuronal differentiation and development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Prader-Willi , RNA Longo não Codificante , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA não Traduzido , RNA Nucleolar Pequeno/genética , RNA Longo não Codificante/genética , Impressão Genômica
3.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496258

RESUMO

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Assuntos
Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
4.
Angew Chem Int Ed Engl ; 60(33): 18144-18151, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33915014

RESUMO

The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.


Assuntos
Regiões 5' não Traduzidas , Antivirais/farmacologia , Substâncias Macromoleculares/farmacologia , RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Chlorocebus aethiops , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Genoma Viral/efeitos dos fármacos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Metais Pesados/química , Simulação de Dinâmica Molecular , RNA/genética , SARS-CoV-2/química , Células Vero
5.
Angew Chem Weinheim Bergstr Ger ; 133(33): 18292-18299, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505190

RESUMO

The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.

6.
J Vis Exp ; (151)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566620

RESUMO

Guide box C/D small nucleolar RNAs (snoRNAs) catalyze 2'-O-methylation of ribosomal and small nuclear RNA. However, a large number of snoRNA in higher eukaryotes may promiscuously recognize other RNA species and 2'-O-methylate multiple targets. Here, we provide step-by-step guide for the fast and non-expensive analysis of the site-specific 2'-O-methylation using a well-established method employing short DNA oligonucleotides called DNAzymes. These DNA fragments contain catalytic sequences which cleave RNA at specific consensus positions, as well as variable homology arms directing DNAzyme to its RNA targets. DNAzyme activity is inhibited by 2-'O-methylation of the nucleotide adjacent to the cleavage site in the RNA. Thus, DNAzymes, limited only by the consensus of the cleaved sequence, are perfect tools for the quick analysis of snoRNA-mediated RNA 2'-O-methylation. We analyzed snoRNA snR13- and snR47-guided 2'-O-methylation of 25S ribosomal RNA in Saccharomyces cerevisiae to demonstrate the simplicity of the technique and to provide a detailed protocol for the DNAzyme-dependent assay.


Assuntos
DNA Catalítico/metabolismo , Genes de RNAr/fisiologia , RNA Nucleolar Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Catalítico/genética , Metilação , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Trends Genet ; 35(2): 104-117, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30563726

RESUMO

Transcribing RNA Polymerase II interacts with multiple factors that orchestrate maturation and stabilisation of messenger RNA. For the majority of noncoding RNAs, the polymerase complex employs entirely different strategies, which usually direct the nascent transcript to ribonucleolytic degradation. However, some noncoding RNA classes use endo- and exonucleases to achieve functionality. Here we review processing of small nucleolar RNAs that are transcribed by RNA Polymerase II as precursors, and whose 5' and 3' ends undergo processing to release mature, functional molecules. The maturation strategies of these noncoding RNAs in various organisms follow a similar pattern but employ different factors and are strictly correlated with genomic organisation of their genes.


Assuntos
RNA Polimerase II/genética , RNA Nucleolar Pequeno/genética , Transcrição Gênica , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética
8.
Elife ; 72018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30507380

RESUMO

Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo ß-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.


Assuntos
Endorribonucleases/química , Histonas/biossíntese , RNA Mensageiro/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Hidrolases , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
Nucleic Acids Res ; 46(21): 11528-11538, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30247719

RESUMO

The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs.


Assuntos
Complexos Multiproteicos/metabolismo , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Imunoprecipitação da Cromatina , Complexos Multiproteicos/genética , Subunidades Proteicas , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
10.
Nat Commun ; 9(1): 1783, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725044

RESUMO

Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation.


Assuntos
Núcleo Celular/metabolismo , RNA Fúngico/genética , RNA Nucleolar Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Citoplasma/metabolismo , Metilação , Capuzes de RNA , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genes Dev ; 29(8): 849-61, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25877920

RESUMO

In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminação da Transcrição Genética/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , DNA Helicases/genética , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
12.
Trends Biochem Sci ; 39(7): 319-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928762

RESUMO

Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA , Terminação da Transcrição Genética , Animais , Humanos , Regiões Promotoras Genéticas
13.
RNA ; 20(1): 115-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24249226

RESUMO

Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.


Assuntos
Endorribonucleases/fisiologia , Exorribonucleases/fisiologia , Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia , Processamento de Terminações 3' de RNA/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Inativação Gênica , Redes e Vias Metabólicas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência/química , Saccharomyces cerevisiae/genética
14.
Mol Cell ; 41(1): 21-32, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21211720

RESUMO

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.


Assuntos
DNA Helicases/fisiologia , Instabilidade Genômica , RNA Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Mol Cell ; 32(2): 247-58, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951092

RESUMO

Transcription termination by RNA polymerase II is coupled to transcript 3' end formation. A large cleavage and polyadenylation complex containing the major poly(A) polymerase Pap1 produces mRNA 3' ends, whereas those of nonpolyadenylated snoRNAs in yeast are formed either by endonucleolytic cleavage or by termination, followed by trimming by the nuclear exosome. We show that synthesis of independently transcribed snoRNAs involves default polyadenylation of two classes of precursors derived from termination at a main Nrd1/Nab3-dependent site or a "fail-safe" mRNA-like signal. Poly(A) tails are added by Pap1 to both forms, whereas the alternative poly(A) polymerase Tfr4 adenylates major precursors and processing intermediates to facilitate further polyadenylation by Pap1 and maturation by the exosome/Rrp6. A more important role of Trf4/TRAMP, however, is to enhance Nrd1 association with snoRNA genes. We propose a model in which polyadenylation of pre-snoRNAs is a key event linking their transcription termination, 3' end processing, and degradation.


Assuntos
Poliadenilação/fisiologia , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/fisiologia , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
16.
J Mol Biol ; 329(5): 853-7, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12798676

RESUMO

The human gene encoding a polynucleotide phosphorylase (hPNPase) has been recently identified as strongly up-regulated in two processes leading to irreversible arrest of cell division: progeroid senescence and terminal differentiation. Here, we demonstrate that the hPNPase is localized in mitochondria. Our finding suggests the involvement of mitochondrial RNA metabolism in cellular senescence.


Assuntos
Mitocôndrias/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Escherichia coli/genética , Células HeLa , Humanos , Microscopia de Fluorescência , Mitocôndrias/enzimologia , Fragmentos de Peptídeos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...